pH Female Broodstock Histology Analysis
Shelly Trigg
10/07/2020
Load libraries
library(ggplot2)
library(ggpubr)
library(rstatix)
##
## Attaching package: 'rstatix'
## The following object is masked from 'package:stats':
##
## filter
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(broom)
library(lme4)
## Loading required package: Matrix
## Registered S3 methods overwritten by 'lme4':
## method from
## cooks.distance.influence.merMod car
## influence.merMod car
## dfbeta.influence.merMod car
## dfbetas.influence.merMod car
library(kableExtra)
##
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
## group_rows
library(tidyr)
##
## Attaching package: 'tidyr'
## The following objects are masked from 'package:Matrix':
##
## expand, pack, unpack
Read in data
female_data <- read.csv("../../data/histology/Female_Gonad/20200820_Female_Gonad_RESULTS.csv", stringsAsFactors = F,colClasses = c(rep("character",4),rep("numeric",7)))
egg_size <- read.csv("../../data/histology/Female_Gonad/egg_size.csv", stringsAsFactors = F, colClasses = c("character","character","numeric"))
format egg size df
#rename columns
colnames(egg_size) <- c("date", "sample_ID", "egg_size")
#merge egg size data with treatment info
egg_size_m <- merge(female_data[,c("date", "sample_ID","pH")], egg_size)
egg_size_m$date <- gsub("20190123", "72",egg_size_m$date)
egg_size_m$date <- gsub("20190221", "93 + 8 day recovery",egg_size_m$date)
plot egg size
#first check distribution
p <- ggplot(data = egg_size_m,aes(x = egg_size, color = pH, group = sample_ID)) + geom_density() + theme_bw() + labs(x = "density", y =expression(paste(log[2]," egg size (",mu,"m"^2,")", sep = "")))+ theme(plot.margin = unit(c(rep(1,4)), "lines"), axis.text.x = element_text(angle = 45)) + facet_wrap(~date)
#it's left skewed so try log transformation
q <- ggplot(data = egg_size_m,aes(x = log(egg_size,2), color = pH, group = sample_ID)) + geom_density() + theme_bw() + labs(x = "density", y = expression(paste(log[2]," egg size (",mu,"m"^2,")", sep = "")))+ theme(plot.margin = unit(c(rep(1,4)), "lines"), axis.text.x = element_text(angle = 45)) + facet_wrap(~date)
#plot boxplots
r <- ggplot(data = egg_size_m,aes(x = date, y = egg_size, color = pH, group = interaction(pH,date, sample_ID))) + geom_boxplot(outlier.shape = NA) + geom_point(pch = 16, size=0.2,position = position_jitterdodge(jitter.width = 0.05)) + theme_bw() + labs(x = "exposure time (days)", y = expression(paste(log[2]," egg size (",mu,"m"^2,")", sep = "")))+ theme(plot.margin = unit(c(rep(1,4)), "lines"))
#after log transformation
s <- ggplot(data = egg_size_m,aes(x = date, y = log(egg_size,2), color = pH, group = interaction(pH,date, sample_ID))) + geom_boxplot(outlier.shape = NA) + geom_point(pch = 16, size=0.2,position = position_jitterdodge(jitter.width = 0.05)) + theme_bw() + labs(x = "exposure time (days)", y = expression(paste(log[2]," egg size (",mu,"m"^2,")", sep = "")))+ theme(plot.margin = unit(c(rep(1,4)), "lines"))
#plot egg size without transformation
ggpubr::ggarrange(p,r,labels = "AUTO", common.legend = T)